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ABSTRACT

We derive a complex non-linear optimal signal
processing algorithm for estimating target reflection
ranges from a set of frequency-stepped CW measure-
ments. We demonstrate the performance of this al-
gorithm using synthetic FSCW data through compar-
isons with the IFFT and the real version of the optimal
signal processing algorithm.

INTRODUCTION

The frequency-stepped continuous wave (FSCW)
radar system has been used in reflection range esti-
mation since the early ‘70’s [1]. The physical data
measured by the FSCW radar system is a sequence
of complex reflection coefficients, which can be inter-
preted as samples of the radar channel frequency re-
sponse If(jw). The objective is to find the reflection
range from these samples. The standard approach [2]
is to apply the IFFT to these samples to obtain an
estimate of the radar channel impulse response. The
resolution of the IFFT is limited by the bandwidth.
In applications where reflections occur in an inhomo-
geneous medium, such as a plasma [3], a narrow band-
width is required to avoid significant dispersion, and
the IFFT often fails to provide satisfactory resolution.

Ybarra et al. [3] presented an optimization algo-
rithm for processing FSCW radar data and showed
range resolution enhancement over the IFFT. This pa-
per presents a generalized version of [3] in that the
constraint on the amplitudes of the reflections has been
relaxed to permit them to be complex. This change al-
lows the reflection to be modeled as a wavelet ra$her
than an abrupt dlscontmmty. The algorlthm derwed
in this paper is general in the number of reflections.
However, simulation results are presented for one and
two reflections for the purpose of visually presenting
the performance. In order to distinguish the two algo-
rithms, we call the one in [3] the real algorithm, and
the one in this paper the complex algorithm.

DERIVATION

The complex algorithm minimizes the performance
measure J,

J = ~ lH(j(uo + iAu)) – H~(j(~o + iAw))12 (1)

‘i=l

where n is the number of reflection coefficients,

H~ (j(wo + iAw)) represent the measured reflection co-
efficients, and H(j(uo + iAu)) represent the values of
the theoretical model computed at the frequency of the
measured reflection coefficients. The H(j(wo + iAu))
are also samples of the frequency response of the time
domain model

h(t) = A16(t–t1)+Aa6(t–t2 )+. . .+ Am6(t–t~) (2)

H(ju) = A1e-~W~’ + A2e-~Wt2 + . ..+ Ame-~’”t~ (3)
where the Ai are the complex amplitudes, the ti are
the two-way time delays to the reflections, and m is
the model order. Therefore, .l is non-linear in tz,and
quadratic in A~. The optimization problem is to find
the A~ and tithat minimize J. For each ti in a pre-
windowed range, J is minimized by solving for the Ai
in closed form in the least squares sense [4]

find a minimizing IlFa – f 112 (4)

where F E C“xm, a ~ Cmxl, and f E C’nxl. The
complex matrix F is composed of frequency response
estimates based on the model (3), and the complex
vector f contains the physical frequency response mea-
surements given by

f = [ HM(WI) HJ4(W”) H&f(u~) . . . HM(U.) ]T

(5)
The complex vector a in (4) is composed of reflection
amplitudes Ai to be determined

a=[ Alr+jAlj A2~+jA2j ““” Am, + jAmj ] T

(6)
The solution to (4) is found by minimizing the scalar
that results from the following squared inner product

Y = ll(Fr+jFj)(ar +jaj) – (fr +jfj)llz (7)

where the subscripts r and i denote real and imaginary
parts respectively. In order to solve for the vector a,
the gradient of (7) is taken with respect to ar and ~j

independently.

dy

z = 2( Fr~Fr + FjTFj)ar – 2( FrTFj –

FjTFr)aJ . – 2( FrTfr + FjTfj) = O (8)

/?y—=
~aj

2( Fr~Fr + FjTFj)aj – 2( Fj~Fr –

FrTFj)ar + 2( Fj~fr – FrTfj) = O (9)
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The result of this minimization process is a real, square
set of simultaneous linear equations, and equations (8)
and (9) can be re-written in a concise matrix form

[: -ml=[al “0)
where A = FrTFr + FjTFjl B = FrTFj –

Fj~Fr, Cl = FrTfr + Fj~fj, and C2 = FrTfj –

F .~fr The complex algorithm utilizes the similar re-

c;rsive procedure and grid search given in [3] to find
the solution pairs A, ,t~ in (2). Readers should refer
to [3] for detail.

COMPUTATIONAL COMPLEXITY

The complex algorithm developed in the previous
section can be applied directly to non real-time oper-
ations. However, for those applications requiring real-
time operations, the computational cost of the com-
plex algorithm has to be investigated. The number of
floating point operations required to find one point in
the J function is approximately

NC = ~mzn + 19mn + 80m3 (11)

where m is the number of delays, and n is the num-
ber of physical measurements. The last term 80m3
is due to the singular value decomposition [5] used to
solve for ar and aj in (10). For a two delay case,

NC = 48n + 640. If the J function is well-behaved, the
global minimum may be found in very few iterations of
scanning both time axes. However, when m becomes
large, parallel processing will be required to implement
the algorithm in real time.

EXPERIMENTAL RESULTS

The first set of data compares the performance be-
tween the IFFT, the real algorithm, and the complex
algorithm. A sequence of 801 reflection coefficients
spanning 14 to 18 GHz was created from a two reflec-
tion model with the time delays (tl,t2)=(2.0,4.0)ns.
Fig. 1 , Fig. 2, and Fig. 3 show a comparison of the
performance between the three algorithms.

The peaks in the plots correspond to the reflections,
and their time delays correspond to the range estima-
tion to the reflection. The three algorithms all produce
accurate estimates at. 2ns and 4ns. Due to the wide
bandwidth, both optlmlzatlon algorithms need only
use one dimensional models to detect the reflecti~ns
accurately. Fig. 2 shows a smc envelope modulatmg
a high frequency sinusoidal function. The modulation
creates ambiguities in determining the time delay esti-
mates. The analytical expressions for the J functions
show that this phenomenon is eliminated by the com-
plex algorithm.

Jc =

1.

;=1 i=l

jjll’- :$1+ ;~ i l~ill~jl
i=l 2=1 2=1 j=i+l

COS((bJi – Wj)t~ + (Oi – ~j)) (13)

where Jr and JC are the J functions of the real and
complex algorithms, respect ively, ]~i I and @i are the
magnitude and phase angle of each measurement, re-
spectively, and t1 is the time delay.

In the next set of data, .51 measurements were made
from 14 to 14.25 GHz, while the delays were kept at 2
and 4 ns. The IFFT for this data set is shown in Fig. 4,
where the two estimated reflections have merged into
one, and hence, are not distinguishable. Jr and ~C for
this case are shown in Fig. 5 and Fig, 6, respectively.
Since the bandwidth is reduced to 250 MHz, two di-
mensional models for the optimization algorithms are
required. In Fig. 5 there are two peaks at (1.05ns,
3.78ns) and (3.78ns, 1.05ns), but they are not accurate
estimates. A zoomed version of Fig. 6 plotting those
points below J = 0.1 is shown in Fig. 7. It clearly
shows two deep minima located at (2.Ons, 4. Ons). This
experiment demonstrates the resolution enhancement
offered by the complex algorithm over the IFFT and
the real algorithm.

The data points for the IFFT have to be uniformly
distributed, but there are applications such as radio as-
tronomy [6] and machine vision [7], where data must
be non-uniformly distributed. The complex algorithm
can process non-uniformly sampled data with no in-
crease in computational requirements. In order to
demonstrate this feature, a sequence of 801 reflection
coefficients were created from a model of four reflec-
tions with time delays tl = 1.5ns, t2 = 3.5ns, t3 =
4.5ns, and t4 = 7.5ns. 21 points were uniformly
sampled from this 801 points. The sampling rate is
T = l/A.f, where Af = 4G/20. The IFFT for these
21 points is shown in Fig. $ in which the last reflection
at t4= 7.5ns has been aliased to 2.5ns. This is due to
the fact that the sampling rate is 5ns and the IFFT is a
periodic function. Any reflections located beyond 5ns
will be aliased into this O-5ns region. Therefore, un-
less we have a priori knowledge of the time delays: we
would not be able to distinguish the actual reflections
from the aliased vqsions.

The above ahasmg effect can be reduced using non-
uniformly sampled reflection coefficients [8]. A sam-
pling procedure was developed

Sj = s~-1 +k(i–1) (14)
where si is the index number of the reflection coeffi-
cient, k is an integer step number, and i runs from
1 to n such that Sn ~ total number of data points.
We chose k = 3 to obtain 23 non-uniformly sam-
pled reflection coefficients from the above 801 data
set. Jc for this case is shown in Fig. 9. The four
peaks all show fairly accurate time delay estimates,
but the third and fourth appear marginal in the depth
of the pulses compared to the noisy side lobes, When
ti is expanded to 100ns, JC is shown in Fig. 10 which
shows clearly the first two reflections and a periodicit y
of Tj = 68.16 – 1,50 = 66.66ns. From (13), we can
determine the part that causes J. to be periodic is

JPer~odie = COS2X3~tI + COS 21r9 gtl +...

+ Cos2T759gt1 + . . . (15)

Since the period of the first term is an integer multiple
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of the periods of the remaining terms, Je then has a

period of 1/(~) = 66.7ns, which coincides with that
shown in Fig. 10.

CONCLUSION

We have presented the derivation of a general-
ized complex optimization algorithm for processing
frequency-stepped CW measurements. We used two
sets of data to compare the performance between the
IFFT, the real algorithm, and the complex algorithm.
The results demonstrate thq resolution enhancement
offered by the complex algor:thm.
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Figure 1: IFFT of 801 reflection coefficients with BW

= 4 GHz. The reflections are at tl = 2.Ons, and tz =

4,0ns

Figure 2: Real amplitude optimized Jr of 801 reflection

coefficients with B W = 4 GHz. The reflections are at

tl = 2.Ons, and tz= 4.Ons

Figure 3: Complex amplitude optimized J. of 801 re-

flection coefficients with BW = 4 GHz. The reflections

are at tl= 2.Ons, and t2= 4.Ons

Figure 4: IFFT of, 101 measurements of the reflection
coefficient with BW = 250 MHz. The reflections are

at tl = 2.Ons, and t2= 4.Ons
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Figure 5: Real amplitude optimized J. function of 51

reflection coefficients with BW = 250 MHz. The re-

flections are at tl = 2,0ns, and ty = 4.Ons

Figure 8: IFFT of 21 uniformly sampled reflection co-

efficients with BW = 4 GHz. The reflections are at

tl = 1.5ns, t2= 3.5ns, t3 = 4.5ns, and t4= 7.5ns

!2(.s) tl(“s)

Figure 9: Complex amplitude optimized J. function of

23 non-uniformly sampled reflection coefficients. The

reflections are at tl = 1.5ns, tz = 3.5ns, tB = 4.5ns,

Figure 6: Complex amplitude optimized J. function

of 51 reflection coefficients with BW = 250 MHz. The

reflections are at tl= 2.Ons, and t2= 4.Ons and t4 = 7.5ns

o

w,) tl (“s)

Figure 10: Zoomed complex amplitude optimized JC

function of 23 non-uniformly sampled reflection coef-

ficients. The reflections are at tl= 1.5ns, t2= 3.5ns,

t3 = 4.5ns, and t4 = 7.5ns

Figure 7: Zoomed complex amplitude optimized JC

function of 51 reflection coefficients with BW = 250

MHz. The reflections are at tl= 2.Ons, and t2= 4.Ons
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